Annual Seasonality Extraction Using the Cubic Spline Function and Decadal Trend in Temporal Daytime MODIS LST Data

نویسندگان

  • Noppachai Wongsai
  • Sangdao Wongsai
  • Alfredo R. Huete
چکیده

Examining climate-related satellite data that strongly relate to seasonal phenomena requires appropriate methods for detecting the seasonality to accommodate different temporal resolutions, high signal variability and consecutive missing values in the data series. Detection of satellite-based Land Surface Temperature (LST) seasonality is essential and challenging due to missing data and noise in time series data, particularly in tropical regions with heavy cloud cover and rainy seasons. We used a semi-parametric approach, involving the cubic spline function with the annual periodic boundary condition and weighted least square (WLS) regression, to extract annual LST seasonal pattern without attempting to estimate the missing values. The time series from daytime Aqua eight-day MODIS LST located on Phuket Island, southern Thailand, was selected for seasonal extraction modelling across three different land cover types. The spline-based technique with appropriate number and placement of knots produces an acceptable seasonal pattern of surface temperature time series that reflects the actual local season and weather. Finally, the approach was applied to the morning and afternoon MODIS LST datasets (MOD11A2 and MYD11A2) to demonstrate its application on seasonally-adjusted long-term LST time series. The surface temperature trend in both space and time was examined to reveal the overall 10-year period trend of LST in the study area. The result of decadal trend analysis shows that various Land Use and Land Cover (LULC) types have increasing, but variable surface temperature trends.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Multiple Datasets for Monitoring Thermal Time in Urban Areas over the U.S. Upper Midwest

Traditional studies of urban climate used air temperature observations from local urban/rural weather stations in order to analyze the general pattern of higher temperatures in urban areas compared with corresponding rural regions, also known as the Urban Heat Island (UHI) effect. More recently, satellite remote sensing datasets of land surface temperature have been exploited to monitor UHIs. W...

متن کامل

Fusion of LST products of ASTER and MODIS Sensors Using STDFA Model

Land Surface Temperature (LST) is one of the most important physical and climatological  crucial yet variable parameter in environmental phenomena studies such as, soil moisture conditions, urban heat island, vegetation health, fire risk for forest areas and heats effects on human’s health. These studies need to land surface temperature with high spatial and temporal resolution. Remote sensing ...

متن کامل

Urbanization Effects on Vegetation and Surface Urban Heat Islands in China's Yangtze River Basin

In the context of rapid urbanization, systematic research about temporal trends of urbanization effects (UEs) on urban environment is needed. In this study, MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature (LST) data and enhanced vegetation index (EVI) data were used to analyze the temporal trends of UEs on vegetation and surface urban heat islands (SUHIs) at 10 bi...

متن کامل

Improving the Downscaling of Diurnal Land Surface Temperatures Using the Annual Cycle Parameters as Disaggregation Kernels

The downscaling of geostationary diurnal thermal data can ease the lack of land surface temperature (LST) datasets that combine high spatial and temporal resolution. However, the downscaling of diurnal LST data is more demanding than single scenes. This is because the spatiotemporal interrelationships of the original LST data have to be preserved and accurately reproduced by the downscaled LST ...

متن کامل

MODIS EVI and LST Temporal Response for Discrimination of Tropical Land Covers

MODIS enhanced vegetation index (EVI) and land surface temperature (LST) are key indicators for monitoring vegetation cover changes in broad ecosystems. However, there has been little evaluation of these indices for detecting changes in a range of land covers in tropical regions. In this study, we investigated the characteristics and seasonal responses of LST and EVI for four different land cov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017